

Université de Picardie Jules Verne

UFR d'économie et de gestion

Mathématiques

Licence 2 - Semestre 3

Exercices d'entrainement

Calcul matriciel

Enoncés

Exercice 1

Déterminer le rang des matrices suivantes :

(a)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 1 & 5 \\ -7 & -35 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} 5 & -1 & 4 \\ -2 & 2 & -4 \\ 9 & 5 & -3 \end{pmatrix}$$

(d)
$$D = \begin{pmatrix} -1 & 2 & -5 & 0 \\ 3 & 1 & 1 & 1 \\ 7 & 7 & -7 & 3 \end{pmatrix}$$

(e)
$$E = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -3 & -4 \\ -1 & 3 & 2 & 6 \\ 1 & 6 & 5 & 7 \end{pmatrix}$$

(f)
$$F = \begin{pmatrix} 1 & -1 & -1 & 2 \\ -1 & -2 & -2 & -2 \\ 2 & 1 & 0 & 5 \\ -2 & 5 & 5 & -4 \end{pmatrix}$$

Exercice 2

Soient
$$A = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 3 \\ -2 & -4 \end{pmatrix}$.

- 1. Déterminer 2A 3B
- 2. Calculer de deux manières différentes $A \times (B + C)$.

Exercice 3

Déterminer, si cela est possible, MP et PM dans les cas suivants :

(a)
$$M = \begin{pmatrix} -1 & 2 & 5 \\ 3 & 1 & -4 \end{pmatrix}$$
 et $P = \begin{pmatrix} 7 & 1 \\ 0 & -2 \end{pmatrix}$

(b)
$$M = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$.

(c)
$$M = \begin{pmatrix} 1 & 2 & 5 & -2 \\ 0 & 3 & 6 & 3 \\ 1 & 4 & -1 & 0 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -2 & 2 \\ 1 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

Exercice 4

Soient
$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 et $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathscr{M}_2(\mathbb{R})$.
Soient $B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathscr{M}_3(\mathbb{R})$.
Calculer $A \times I_2$, $I_2 \times A$, $B \times I_3$ et $I_3 \times B$.

Exercice 5

Soient
$$A = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix}$ deux matrices de $\mathcal{M}_2(\mathbb{R})$.

- 1. Calculer A + B, B + A, $A \times B$ et $B \times A$.
- 2. Calculer $(A + B) \times (A + B)$, $A \times A$, $B \times B$.
- 3. A-t-on $(A + B)^2 = A^2 + 2.AB + B^2$?
- 4. Donner le développement de $(A+B)^2$.

Exercice 6

Soient
$$A = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & -3 & -1 \end{pmatrix}$ deux matrices de $\mathcal{M}_3(\mathbb{R})$. Calculer $A \times B$ et $B \times A$. Conclure.

Exercice 7

Calculer
$$\begin{pmatrix} 1 & 2 & -2 & -1 \\ -1 & 1 & 1 & -1 \\ 2 & 2 & -1 & 1 \\ 2 & -2 & -2 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 2 & 2 \\ 1 & 2 & -2 & -2 \\ -1 & 2 & -2 & 2 \\ 1 & -2 & -2 & 2 \end{pmatrix}.$$

Exercice 8

Soient
$$A = \begin{pmatrix} 1 & 5 \\ -4 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -6 & 3 \\ 3 & -5 \end{pmatrix}$. Soit $X \in \mathcal{M}_2(\mathbb{R})$. Résoudre l'équation $AX = B$.

Exercice 9

Soient
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$.
Résoudre l'équation $AX = B$.

Exercice 10

Soit
$$A=\left(\begin{array}{ccc} 0 & 1 & -1\\ 4 & -3 & 4\\ 3 & -3 & 4 \end{array}\right)$$
. Calculer A^2 . En déduire A^{-1} .

Exercice 11

Soient les matrices inversibles à coefficients dans $\mathbb R$ suivantes :

$$A = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & 2 \\ 1 & -1 & 3 \\ 0 & 1 & -2 \end{pmatrix} \text{ et } C = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 3 \\ -1 & 0 & 1 & -1 \\ -2 & -1 & 4 & 0 \end{pmatrix}$$

Déterminer leurs inverses par la méthode 1 du cours.