

Université de Picardie Jules Verne

UFR d'économie et de gestion

Mathématiques

Licence 2 - Semestre 3

Exercices d'entrainement

Les espaces vectoriels \mathbb{R}^n

Enoncés

Exercice 1

Etant donnés les vecteurs a = (-5; 2; 1; -1; 3), b = (1; 0; 3; 2; 4) et c = (0; 2; 1; -1; 3) de \mathbb{R}^5 , calculer les combinaisons linéaires suivantes : a + b, a - b, 2a + b - c et 2(a - b) + 3(b + c) - 5c.

Exercice 2

Soient les vecteurs a = (3; 1; -1; 2), b = (1; 0; -2; 3) et c = (-4; -1; 3; -5) de \mathbb{R}^4 .

- 1. Calculer a + b + c. Qu'en déduire sur l'opposé du vecteur a?
- 2. La famille $\{a, b, c\}$ est-elle libre?
- 3. Calculer 2(a-3b) + 5(b+2c).
- 4. Calculer $a 4\left(b \frac{1}{2}c\right)$.
- 5. Déterminer les réels α et β tels que le vecteur $\alpha a + \beta b c$ ait ses deux premières composantes nulles.

Exercice 3

Soient a = (1, 2, 3), b = (1, 1, -1) et c = (2, 1, 1) trois vecteurs de \mathbb{R}^3 .

- 1. Résoudre l'équation 3u 2a + b = 4(u c) où u = (x; y; z) est un vecteur de \mathbb{R}^3 .
- 2. Résoudre dans \mathbb{R}^3 le système $\begin{cases} 2u 3v &= 2a b \\ -u + 2v &= a + c \end{cases} .$
- 3. Résoudre l'équation $k.a + \ell.b + m.c = 0$ où $k, \ell, m \in \mathbb{R}$.
- 4. Soit w = (1, 7, 16). Trouver les réels l_1 , l_2 et l_3 tels que $w = l_1.a + l_2.b + l_3.c$ Rappel : on dit que w est une combinaison linéaire des vecteurs a, b et c.

Exercice 4

Dans l'espace vectoriel \mathbb{R}^4 , déterminer le rang de la famille $\{a, b, c, d, e\}$ où a = (1; -1; 2; -3), b = (2; 1; -1; 1), c = (5; 4; -5; 6), d = (7; 2; -1; 0) et e = (1; 2; -3; 4).

Exercice 5

Soit l'ensemble $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$ et soient $u_1 = (1, 2, 1)$ et $u_2 = (1, 0, 2) \in \mathbb{R}^3$.

- 1. Montrer que F est un s.e.v. de \mathbb{R}^3 .
- 2. Donner une base de F.
- 3. Soit $G = \text{Vect}(u_1; u_2)$. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- 4. Ecrire le vecteur v = (0; 4; -1) en fonction d'une famille de 3 vecteurs constituée d'une base de F et d'une base de G.

Exercice 6

Soient les ensembles $F=\{(x,y,z)\in\mathbb{R}^3\mid x=y=2z\}$ et $G=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}.$

- 1. Montrer que F et G sont des s.e.v. de \mathbb{R}^3 et donner une base de chacun d'eux.
- 2. F et G sont-ils supplémentaires dans \mathbb{R}^3 ?

Exercice 7

Soit $(e) = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $(b) = (b_1, b_2, b_3)$ la famille de \mathbb{R}^3 composée des vecteurs $b_1 = (1, 0, 2), b_2 = (2, 1, -1)$ et $b_3 = (5, 2, -2)$.

- 1. Montrer que (b) est une base de \mathbb{R}^3 .
- 2. Soit $u \in \mathbb{R}^3$ tel que $[u]_b = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$. Donner $[u]_e$.
- 3. Soit $v = (2, 1, -4) \in \mathbb{R}^3$. Donner $[v]_b$.

Exercice 8

Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par : $\forall u=(x,y,z)\in\mathbb{R}^3,\ f(u)=(x+y-z,4x+y-2z,5x-y-z)$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer une base de Ker(f).
- 3. Déterminer une base de Im(f).
- 4. Ces deux s.e.v. sont-ils supplémentaires?

Exercice 9

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 définie par $\forall u = (x, y) \in \mathbb{R}^2$, f(u) = (2x + y, 3x - y).

- 1. Déterminer Ker(f) et Im(f).
- 2. L'application f est-elle bijective?
- 3. Soient $(e) = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et soient $b_1 = (1, 1)$ et $b_2 = (-2, 3)$.
 - (a) Montrer que $(b) = (b_1, b_2)$ est une base de \mathbb{R}^2 .
 - (b) Donner $M_{(b),(e)}(f)$.

(c) $M_{(b),(e)}(f)$ est-elle inversible? Si oui donner son inverse.

Exercice 10

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 définie par $\forall u=(x,y)\in\mathbb{R}^2, f(u)=(2x+y,4x+2y).$

- 1. Déterminer Ker(f) et Im(f).
- 2. L'application f est-elle bijective?
- 3. Soient $(e) = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et soient $b_1 = (1, 1)$ et $b_2 = (4, 5)$.
 - (a) Montrer que $(b) = (b_1, b_2)$ est une base de \mathbb{R}^2 .
 - (b) Donner $M_{(b),(e)}(f)$.
 - (c) $M_{(b),(e)}(f)$ est-elle inversible? Si oui donner son inverse.

Exercice 11

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 définie par $\forall u=(x,y)\in\mathbb{R}^2, f(u)=(-2x+y,x+y).$

- 1. Déterminer Ker(f) et Im(f).
- 2. L'application f est-elle bijective?
- 3. Soient $(e) = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et soient $b_1 = (1, 1)$ et $b_2 = (-2, 3)$.
 - (a) Montrer que $(b) = (b_1, b_2)$ est une base de \mathbb{R}^2 .
 - (b) Donner $M_{(b),(e)}(f)$.
 - (c) $M_{(b),(e)}(f)$ est-elle inversible? Si oui donner son inverse.

Exercice 12

Soit f l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 définie par $\forall u = (x, y) \in \mathbb{R}^2$, f(u) = (-2x + y, 4x - 2y).

- 1. Déterminer Ker(f) et Im(f).
- 2. L'application f est-elle bijective?
- 3. Soient $(e) = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et soient $b_1 = (1, 1)$ et $b_2 = (4, 5)$.
 - (a) Montrer que $(b) = (b_1, b_2)$ est une base de \mathbb{R}^2 .
 - (b) Donner $M_{(b),(e)}(f)$.
 - (c) $M_{(b),(e)}(f)$ est-elle inversible? Si oui donner son inverse.

Exercice 13

Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 définie par : $\forall u=(x,y,z)\in\mathbb{R}^3, \ f(u)=(x+y,x-y+z,y-z)$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer Ker(f) et Im(f).

- 3. L'application f est-elle bijective?
- 4. Soient $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ et $e_3 = (0, 0, 1)$.
 - (a) Montrer que $(e) = (e_1, e_2, e_2)$ est une base de \mathbb{R}^3 (la famille (e) est appelée la base canonique de \mathbb{R}^3).
 - (b) Déterminer les images de e_1 , e_2 et e_3 par f.
 - (c) Donner $M_{(e)}(f)$.
- 5. Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y\}.$
 - (a) Montrer que F est un s.e.v. de \mathbb{R}^3 et donner une base de \mathbb{R}^3 .
 - (b) Déterminer un supplémentaire de F dans \mathbb{R}^3 .
 - (c) Déterminer l'ensemble image de F par f c'est-à-dire f(F).